उच्च गुणवत्ता, पूर्ण-रंग, पूर्णतः स्वचालित वैश्वीकरण। AI का इस्तेमाल।
अन्य साइटों की तरह कोई कम गुणवत्ता या 2-रंग वाली ट्रेसिंग नहीं है।
GIF एक सामान्य पैलेट-इंडेक्स-आधारित हानिरहित¹ रास्टर फॉर्मेट है जो क्रूड एनिमेशन और 1-बिट उपनामित पारदर्शिता के समर्थन के साथ है। गैर-फोटोग्राफ जैसी सामग्री की गैर-एनिमेटेड रास्टर इमेजिस के लिए, PNG आमतौर पर GIF से बेहतर विकल्प होता है, और SVG अक्सर दोनों से बेहतर विकल्प होता है।
रास्टर फॉर्मेट के रूप में, GIF इमेजिस को पिक्सेल के एक समान ग्रिड के रूप में एन्कोड करता है, जिनमें से प्रत्येक को एक निर्दिष्ट रंग के एक छोटे आयत (आमतौर पर एक स्क्वेयर) के रूप में माना जा सकता है। कुल मिलाकर पिक्सेल का यह ग्रिड अपने मूल आकार में देखने पर एक इमेज जैसा दिखता है, लेकिन एक रास्टर इमेज को बड़े आकार में स्केल करने से पिक्सेलयुक्त या धुंधली इमेज प्राप्त होगी।
¹ हानिरहित का अर्थ है कि किसी इमेज को एन्कोड करना और फिर उसे डिकोड करना एक ऐसा परिणाम पैदा करता है जो मूल इस्मेज के जैसा ही होता है।
SVG XML पर आधारित एक आधुनिक वेक्टर फॉर्मेट है जो पारदर्शिता, ग्रेडिएंट और एनिमेशन का समर्थन करता है। SVG आधुनिक वेब ब्राउज़र द्वारा समर्थित है और व्यापक अंतर से आज इस्तेमाल में आने वाला सबसे आम वेक्टर फॉर्मेट है।
अधिकांश वेक्टर संपादन सॉफ़्टवेयर SVG को इम्पोर्ट और एक्सपोर्ट कर सकते हैं, भले ही वे आमतौर पर Adobe के AI फॉर्मेट जैसे अन्य स्वामित्व फॉर्मेट के लिए डिफ़ॉल्ट हों। SVG की कुछ अधिक एडवांस सुविधाओं, जैसे एनिमेशन और फ़िल्टर प्रभावों का कम व्यापक समर्थन है।
SVG आमतौर पर लोगो, आइकन, रेखाचित्र, चित्र और अन्य समान डिजिटल आर्टवर्क के लिए सबसे अच्छा विकल्प है। SVG, Vectorizer.AI का पसंदीदा एक्सपोर्ट फॉर्मेट है, क्योंकि यह हमारे वेक्टराइज़ेशन इंजन की सभी सुविधाओं का समर्थन करता है।
आप अपनी इमेज को खींचकर ऊपर डैश्ड बॉक्स पर छोड़ सकते हैं, या फ़ाइल चयन डायलॉग खोलने के लिए उस पर क्लिक कर सकते है।
एक बार जब आपकी इमेज अपलोड हो जाती है, तो वैक्टराइज़ेशन प्रक्रिया अपने-आप शुरू हो जाएगी।
जल्दी से उच्च गुणवत्ता वाले परिणाम उत्पन्न करने के लिए, वैक्टराइज़ेशन प्रक्रिया हमारे उच्च-प्रदर्शन सर्वर पर की जाती है।
एक बार प्रक्रिया पूरी होने के बाद आपको ज़ूमिंग और पैनिंग करने में सक्षम एक इंटरैक्टिव व्यूअर में परिणाम दिखाया जाएगा, ताकि आप डाउनलोड करने से पहले इसका विस्तार से निरीक्षण कर सकें।
जब आप समीक्षा पूरी कर लें तो आप अपने परिणाम को अपने कंप्यूटर पर लाने के लिए 'डाउनलोड' बटन पर क्लिक कर सकते हैं।
हम SVG सहित विभिन्न प्रकार के एक्सपोर्ट विकल्प और फॉर्मेट प्रदान करते हैं, जो आपको अपनी विशिष्ट आवश्यकताओं के अनुसार परिणाम तैयार करने की अनुमति देते हैं।
किसी इमेज को वैक्टराइज़िंग करना मानव आँख के लिए आसान है, लेकिन कंप्यूटर के लिए आश्चर्यजनक रूप से कठिन है। अधिकांश सॉफ़्टवेयर जो ऐसा करने का प्रयास करते हैं, गंभीर दोषों के साथ खराब परिणाम देते हैं। परिणाम में आकृतियाँ शामिल की जा सकती हैं जो वहाँ नहीं होनी चाहिए, जैसे कि एंटी-एलियासिंग कलाकृतियाँ, या आकृतियाँ गायब हो सकती हैं जो वहाँ होनी चाहिए, जैसे छोटी और/या धुंधली विशेषताएँ। आकृतियाँ सही होने पर भी, आकृतियों को परिभाषित करने वाले वक्रों को खराब ढंग से चुना जा सकता है। कुछ मामलों में, वक्र मूल इमेज का अच्छी तरह से अनुसरण नहीं करते हैं। अन्य मामलों में, बहुत सारे वक्र हैं, या जो वक्र मौजूद हैं वे खराब तरीके से रखे गए हैं, जब उन्हें मिलान करने वाली स्पर्शरेखाओं से जुड़ना चाहिए, या उन्हें गलत प्रकार के वक्र का इस्तेमाल करके दर्शाया जाना चाहिए (उदाहरण के लिए, जब एक अण्डाकार चाप बेहतर होगा तो एक द्विघात बेज़ियर का इस्तेमाल करना)।
वैश्वीकरण प्रक्रिया में प्रत्येक चरण जटिल है और कई अलग-अलग एल्गोरिदम हैं जिनका इस्तेमाल किया जा सकता है। हमारे कई प्रतिस्पर्धी पुराने और सरल एल्गोरिदम का इस्तेमाल करते हैं जो अच्छे परिणाम नहीं देते हैं। उनमें से कुछ केवल 2-रंग वैक्टराइज़ेशन का समर्थन करते हैं, जो उनकी उपयोगिता को महत्वपूर्ण रूप से सीमित कर देता है। Vectorizer.AI वैक्टराइज़ेशन इंजन हमारे अपने स्वामित्व अनुसंधान पर आधारित है और सर्वोत्तम परिणाम देने के लिए गहन शिक्षण और अन्य तकनीकों के संयोजन का इस्तेमाल करता है। वक्रों को सावधानीपूर्वक चुना जाता है और अंतर्निहित इमेज को यथासंभव निकट से फिट करने के लिए अनुकूलित किया जाता है।
हम वृत्त, दीर्घवृत्त, आयत, तारे और त्रिकोण जैसी विशिष्ट आकृतियों की भी पहचान करते हैं और उन्हें स्पष्ट रूप से इस रूप में प्रस्तुत करते हैं। इससे परिणामों को बेहतर दिखते हैं और उन्हें संपादित करना आसान हो जाता है।
वैक्टराइज़ेशन एल्गोरिदम विकसित करते समय किया जाने वाला एक सामान्य सरलीकरण विकल्प केवल दो रंगों (उदाहरण के लिए, काले और सफेद) का समर्थन करना है। ऐसे एल्गोरिदम के शीर्ष पर बनाए गए उत्पाद पूर्ण-रंग वैक्टराइज़ेशन प्रणालियों की तुलना में काफी कम उपयोगी और बहुमुखी हैं। अन्य सिस्टम ज़्यादा रंगों को समर्थित करते हैं लेकिन सिर्फ अलग तरीके से प्रत्येक रंग पर 2 रंग वाली एल्गोरिदम चलाकर।
इसके विपरीत, पारदर्शिता और आंशिक पारदर्शिता सहित पूर्ण-रंग वैक्टराइज़ेशन का समर्थन करने के लिए Vectorizer.AI वैक्टराइज़ेशन इंजन को जमीन से ऊपर तक बनाया गया था। हमारे सिस्टम में अंतर्निहित वैक्टर ग्राफ़ आसन्न आकार की सीमाओं के बीच निर्बाध रूप से स्थिरता बनाए रखता है, जबकि सिस्टम को सर्वोत्तम संभव गुणवत्ता के लिए परिणाम को अनुकूलित करने की अनुमति देता है।
वैक्टराइज़ेशन दो मुख्य तरीकों में आता है: पुनर्निर्माण और प्रेरणादायक।
पुनर्निर्माण वैक्टराइज़ेशन एक बिटमैप इमेज को परिवर्तित करने की प्रक्रिया है जो एक बार एक वैक्टर मूल को रास्टर करके एक वैक्टर इमेज में बनाई गई थी जो मूल के जितना संभव हो उतना करीब है। लक्ष्य है कि मूल वैक्टर कला का पुनर्निर्माण करना है। यह लोगो, आइकन और अन्य डिजिटल ग्राफ़िक्स पर सबसे अधिक उपयोगी है जहां मूल वैक्टर कला उपलब्ध नहीं है।
प्रेरक वैक्टराइज़ेशन एक तस्वीर, पेंटिंग, या अन्य समान रास्टर इमेज को एक वैक्टर इमेज में परिवर्तित करता है जो मूल से प्रेरित है, लेकिन ज़रूरी नहीं कि इसे बिल्कुल फिर से बनाने का प्रयास किया जाए। यह एक प्लेटोनिक आदर्श का पुनर्निर्माण करने की तुलना में मूल के कुछ कलात्मक सार या भावना को पकड़ने के बारे में अधिक है।
हमारा प्राथमिक ध्यान पुनर्निर्माण वैक्टराइज़ेशन पर है, लेकिन हम निश्चित रूप से प्रेरणादायक का भी समर्थन करते हैं।
अधिकांश वैक्टर फॉर्मेट अपने अंदर एम्बेडिंग रास्टर इमेजेस का समर्थन करते हैं। ऐसा करने से एक 'नकली' वेक्टर फ़ाइल बन जाती है क्योंकि यह इमेज की मूलभूत पिक्सेल प्रकृति को नहीं बदलती है। ऐसे परिणामों के साथ आप अभी भी गुणवत्ता के नुकसान के बिना उन्हें बड़े आकार में स्केल करने जैसी चीजें नहीं कर सकते हैं।
जब GIF से SVG में बदलते समय, इमेज को वास्तव में वैक्टराइज़ करना बहुत महत्वपूर्ण है। इस प्रक्रिया में इमेज में आकृतियों का पता लगाना, उनमें वक्र फिट करना और परिणाम को एक वास्तविक वैक्टर फ़ाइल के रूप में निर्यात करना शामिल है। अंतिम परिणाम में कोई पिक्सेल डेटा नहीं होता है और गुणवत्ता की हानि के बिना इसे किसी भी आकार में बढ़ाया जा सकता है।
हम Vectorizer.AI में, केवल असली वैक्टराइज़ेशन का समर्थन करते हैं।